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A B S T R A C T

Many sparse representation (SR) based salient object detection methods have been presented in the past
few years. Given a background dictionary, these methods usually detect the saliency by measuring the
reconstruction errors, leading to the failure for those images with complex structures. In this paper, we
propose to replace the traditional SR model with a robust sparse representation (RSR) model, for salient
object detection, which replaces the least squared errors by the sparse errors. Such a change dramatically
improves the robustness of the saliency detection in the existence of non-Gaussian noise, which is the case
in most practical applications. By virtual of RSR, salient objects can equivalently be viewed as the sparse
but strong “outliers” within an image so that the salient object detection problem can be reformulated to
a sparsity pursuit one. Moreover, we jointly utilize the representation coefficients and the reconstruction
errors to construct the saliency measure in the proposed method. Finally, we integrate a local consistency
prior among spatially adjacent regions into the RSR model in order to uniformly highlight the whole
salient object. Experimental results demonstrate that the proposed method significantly outperforms the
traditional SR based methods and is competitive with some current state-of-the-art methods, especially for
those images with complex structures.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Visual saliency refers to identifying certain regions of a scene,
which stand out from their surroundings and catch immediate atten-
tion [1]. As an important branch of visual saliency, salient object
detection has attracted a wide range of attention. Generally, it is
essentially a binary segmentation problem [2] starting by detecting
the attractive objects in a scene followed by a segmentation pro-
cedure that extracts the entire objects from the background. It has
been widely applied to many fields, such as image segmentation [3],
classification [4], cluster [5], recognition [6], content-based image
retrieval [7] and image fusion [8].

Recently, sparse representation (SR) has been exploited to salient
object detection [9–12] as a result of its successful applications in
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many computer vision and image processing tasks, such as face
recognition [13], image classification [14], and so on. In these SR
based methods, the salient object detection is normally carried out
in three steps. First, input images are divided into many patches or
super-pixels. Secondly, an over-complete dictionary is constructed,
which helps to encode the feature vectors collected from those
patches or super-pixels. Thirdly, the saliency value for each patch or
super-pixel is measured according to its representation coefficients
or residual errors.

For the SR based salient object detection methods, there are
two important issues: dictionary construction and saliency measure.
Earlier methods are prone to adopt the surrounding patches of
each test patch as the dictionary [9,10]. Due to the fact that the
edges of salient objects have high contrast against their surrounding
patches, such SR based methods usually assign higher salient values
to the edges rather than the whole objects, as illustrated in Fig. 1
(b). Recently, some boundary priors [15] are integrated into these
methods based on the assumption that backgrounds are usually
distributed on the boundary of an image. Under this assumption,
the patches or super-pixels near the boundary of an image are often
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selected to construct a background dictionary [12,16,17]. As shown
in the first row of Fig. 1 (c), these methods could overcome the
shortcomings of those methods with the surrounding patches as the
dictionary.

With respect to the saliency measure, most SR based salient
object detection methods employ either the sparseness (i.e., the cod-
ing length) of the representation coefficients or the reconstruction
errors, especially the latter, to define the saliency measure [9–11],
because there is an assumption that natural signals can be repre-
sented or approximately represented as a linear combination of a
“few” atoms from a redundant dictionary [9,10].

However, the traditional SR model employed in those salient
object detection methods imposes a sparsity constraint on the rep-
resentation coefficients to achieve the sparse coding of each test
image patch or super-pixel. It basically minimizes the sum of squared
reconstruction errors, therefore tending to be sensitive to the non-
Gaussian noise as well as sparse “outliers” [13,18]. Two undesirable
results will be obtained when the residual errors are used as the
saliency measure, especially for those methods based on the back-
ground dictionary. One is that many regions belonging to the fore-
ground will not be highlighted when the foreground object and the
background look similar, as shown in the second and third rows in
Fig. 1 (c). The other one is that the background will not be well
suppressed, as shown in the last two rows in Fig. 1 (c).

Moreover, there generally exist strong spatial correlations among
the local neighboring regions in an image, i.e., the spatially adjacent
patches or super-pixels with similar features should have similar
saliency values. But in most of the existing salient object detection
methods, this local consistency is often ignored, and the saliency of
each image patch or super-pixel is computed independently. As a
result, the whole salient object could not be uniformly highlighted,
as shown in the third and last rows in Fig. 1 (d). Besides, background
cannot be well suppressed, resulting parts of the background being

falsely taken as the salient regions, as shown in the first and fourth
rows in Fig. 1 (d).

In this paper, we aim to detect the salient object in an image
with complex structures by addressing the two problems men-
tioned above. More specifically, to enhance the algorithm robustness
against the non-Gaussian noise, we replace the least squared recon-
struction errors with the sparse reconstruction errors. In another
word, we impose an l2,1-norm minimization constraint on the recon-
struction errors to ensure the column-sparsity of the error matrix.
It can be interpreted as that the salient objects are sparsely dis-
tributed “outliers” within an image and seeking such “outliers” is
equivalent to a sparsity pursuit problem, which can be solved by a
robust sparse representation (RSR) model [18]. When applied to the
detection of salient objects, RSR is expected to possess higher dis-
tinctiveness between the foreground objects and their backgrounds,
as shown in Fig. 1 (d). Besides, based on the local consistency, the
spatially adjacent pathes or super-pixels with similar features should
have similar saliency values. Thus, they should possess similar sparse
representation coefficients as well as reconstruction errors when
they are sparsely encoded by using RSR with respect to the same
background dictionary. We achieve that by introducing two Lapla-
cian regularizations with respect to the representation coefficients
and reconstruction errors, respectively, into the RSR model. As a
result of that, the whole salient object can be uniformly highlighted.
More importantly, the background can also be well suppressed, as
shown in Fig. 1 (e). Eventually, an objective function taking both the
above-mentioned aspects into account is minimized, thus helping to
generate the saliency map.

In summary, our paper differs from the existing works in three
aspects:

(1) We employ the RSR model, instead of the traditional SR
model, in our proposed method. To our best knowledge, this

Fig. 1. Typical challenging examples for SR based salient object detection methods. (a) Original images; (b) SR based method with surrounding patches as the dictionary
[10]; (c) SR based method with background templates near the image boundary as the background dictionary; (d) Proposed RSR method with the background dictionary
but without the local consistency prior; (e) Proposed RSR method with the background dictionary as well as the local consistency prior; (f) Ground truth.
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is the first attempt to apply the RSR model to the detection
of salient objects. By virtue of RSR, the salient object is mod-
eled as sparse but strong “outliers” within an image so that
the salient object detection can be accomplished by solving a
sparsity pursuit problem.

(2) We involve a local consistency prior among spatially adja-
cent regions by imposing two Laplacian regularizations on the
representation coefficients and reconstruction errors in our
proposed method. This is again different from the existing
works, such as [17], in which only a Laplacian regularization
term is imposed on the representation coefficients.

(3) Twosaliencymeasuresaredefinedbasedontherepresentation
coefficients and the reconstruction errors, respectively, and
the two saliency measures are fused to obtain the final saliency
measure. Especially, in the representation coefficient based
saliency measure, the sparseness and magnitude information of
the representation coefficients are jointly employed.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 describes the proposed
salient object detection method in detail. Experimental results and
conclusions are given in Section 4 and Section 5, respectively.

2. Related work

2.1. Contrast-based salient object detection methods

During the last few years, numerous salient object detec-
tion methods have been proposed [9-12,19-28], among which the
contrast-based methods are most popular [9,10,15,16,21,22,26,27].
These contrast-based methods can be further divided into local-
contrast based and global-contrast based ones, respectively.

Local-contrast based methods tend to highlight a certain region
with high visual attention with respect to its small neighbor-
hoods [17,21,22,29]. The earlier local-contrast based methods are
designed for only saliency detection [19], but in recent years, they
are extended to salient object detection [21,29]. The common obser-
vation is that these methods tend to produce higher saliency values
near the edges instead of uniformly highlighting the whole salient
objects.

As opposed to those local-contrast based ones, global-contrast
based methods evaluate the saliency value of each pixel or region
with respect to the entire image [22,23]. In other words, these
methods aim to capture the holistic rarity or uniqueness from an

image. Compared with the local-contrast based methods, global-
contrast based methods can obtain more uniform detection results
and have attracted more attentions [20,22,23].

In view of the advantages of local-contrast based and global-
contrast based methods, combining such two methods has been
studied in recent years [24,25,30,31]. For example, in [24], a salient
object detection method was presented, which integrated a global
saliency estimation via a high-dimensional color transform (HDCT)
and a local saliency estimation via regression. The two result-
ing saliency maps complemented each other to obtain a final
saliency map. Similarly, in [25], the authors presented a coding-
based saliency measure by exploring both global and local cues for
saliency computation.

2.2. SR based salient object detection methods

Recently, some salient object detection methods have been pre-
sented based on the sparse representation (SR) theory. In the earlier
SR based methods, the predefined dictionary is simply selected from
the surrounding patches of each given test patch. Such approaches
generally produce higher saliency values at the boundaries of the
object [9,10]. In essence, these methods can be categorized as the
local-contrast based ones.

Lately, several boundary priors [15] have been integrated into
these SR based methods considering the fact that the background
is usually distributed on the boundary of an image. Based on this
assumption, the patches or super-pixels near the image bound-
ary are often selected to construct a global background dictionary.
Then, the saliency value for each patch or super-pixel could be
measured according to reconstruction errors with respect to the
predefined background dictionary. For example, in [16], saliency
was measured via the reconstruction errors with respect to the
background templates obtained from the image boundary. To accu-
rately locate the salient object, the authors [17] constructed a heuris-
tic background dictionary to increase the discriminating power and
representation efficiency of the traditional SR model. The heuris-
tic background dictionary was obtained from the image boundary
where the foreground noises had been removed from the border
regions. Due to the fact that all of the test image super-pixels are
reconstructed from the same background dictionary, these meth-
ods can be seen as global-contrast based ones. In general, these
methods could more uniformly highlight the whole salient object in
most cases than those methods using the surrounding patches as the
dictionary.

3. Proposed algorithm

In this section, we will first briefly introduce the robust sparse representation (RSR) model in [18] and then explain how we apply it to the
detection of salient objects.

3.1. Robust sparse representation model

Let X = [x1, x2, . . . , xN] be an observed data matrix of size d × N, each column of which is a data vector xi ∈ Rd. Given a dictionary D ∈ Rd×M

with M prototype atoms, the RSR model is defined as follows [18]

min
Z,E

‖Z‖1 + k ‖E‖2,1 s.t. X = DZ + E (1)

where ‖Z ‖1 denotes the l1-norm of the matrix Z and is defined as ‖Z‖1 =
∑

ij

∣∣Z(i, j)
∣∣. ‖E‖2,1 denotes the l2,1-norm of the matrix E and is defined

as
∥∥E

∥∥
2,1 =

∑
j

√∑
i(E(i, j))2. Z(i, j) and E(i, j) are the (i, j)-th entries of the matrices Z and E, respectively. The parameter k> 0 is employed to

balance the effects of the two components in Eq. (1).
Revealed in Eq. (1), the RSR model imposes the sparsity constraint on the representation coefficients matrix Z to sparsely encode each image

patch or super-pixel. And the l2,1-norm is imposed on the reconstruction errors matrix E to ensure that it is sparse in column. In the traditional
SR model, the conventional least squared reconstruction error is employed, which tends to be sensitive to the non-Gaussian noise, such as
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sparse “outliers”. Differently, in the RSR model, a so-called sparse reconstruction error is employed, which improves the robustness of the
RSR model against the non-Gaussian noise or sparse but strong “outliers”, and helps to select the discriminative patches or super-pixels.

Actually, the l2,1-norm has been widely utilized in different tasks, including feature selection [32] and subspaces clustering [5]. In our
method, each column in the error matrix E corresponds to the RSR reconstruction errors for each super-pixel. By using the l2,1-norm
minimization, E is ensured to be sparse in column, i.e., some columns in E will be forced to be zero ones. This indicates that the super-pixels
corresponding to these columns can be well reconstructed by using the given background dictionary and are thus seen as background ones. In
contrast, the super-pixels corresponding to those non-zero columns cannot be well reconstructed by using the given background dictionary.
In other words, these super-pixels are significantly different from those background super-pixels and are thus seen as foreground salient ones.
Therefore, the l2,1-norm minimization on the error matrix E can be used to detect those foreground super-pixels that are distinct from the
background ones.

3.2. RSR based salient object detection

Fig. 2 illustrates the diagram of the proposed method, mainly consisting of three parts: image over-segmentation and feature extraction,
robust sparse coding with local consistency, saliency map generation and propagation. In the following contents, we will elaborate each part.

3.2.1. Image over-segmentation and feature extraction
In our proposed method, the input image I is first over-segmented into N super-pixels S = [s1, s2, . . . , sN] by using the simple linear iterative

clustering (SLIC) algorithm [33] due to its simplicity and efficiency. For each super-pixel si, a feature vector xi ∈ Rm of dimension m = 9 is
constructed, which includes its red-, green-, and blue-components in RGB color space, its lightness- and two color-opponent-components in
the CIELab color space, and its hue-, saturation-, and value-components in the HSV color spaces. On top of it, the feature vector for each super-
pixel is generated via averaging all of the feature vectors of the pixels contained in the current super-pixel. Finally, horizontally stacking the
feature vectors of all superpixels produces a feature matrix X ∈ Rm×N for the input image, i.e., X = [x1, x2, . . . , xN] ∈ Rm×N.

3.2.2. Background dictionary construction
Similar to other SR based salient object detection methods, the predefined dictionary plays an important role in the proposed RSR based

method. Motivated by its successful applications in the salient object detection methods [12,15-17,27,28], we also use the image boundary
prior to construct a background dictionary D = [d1, d2, . . . , dK] ∈ Rm×K in the RSR model. In such a background dictionary D, di ∈ Rm denotes
the feature vector of a super-pixel near the image boundary, and K refers to the number of the dictionary atoms. Here, we simply extract all
the super-pixels that directly connect the image border to construct the background dictionary.

3.2.3. Robust sparse coding with local consistency
Using the dictionary D ∈ Rm×K constructed in the previous sub-section, each super-pixel could be sparsely represented if directly applying

the RSR model in Eq. (1). However, this ignores the strong correlations among the spatially adjacent regions [17], and thus will be unavoidable
for some isolated regions in the detected result. In principle, the spatially adjacent super-pixels with similar features should have similar
saliency values [17]. Consequently, these super-pixels will have similar representation coefficients and reconstruction errors when sparsely

Fig. 2. Diagram of the proposed salient object detection.
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encoded by using RSR with respect to the same background dictionary. We achieve that by imposing two Laplacian regularizations on the
representation coefficients and reconstruction errors, respectively. The resulting salient object detection model is formulated as follows.

min
Z,E

‖Z‖1 + k1 ‖E‖2,1 + k2tr
(

ZLZT
)

+ k3tr
(

ELET
)

s.t. X = DZ + E (2)

where Z ∈ RK×N and E ∈ Rm×N are the representation coefficients matrix and reconstruction errors matrix corresponding to the input image
X ∈ Rm×N, respectively. D ∈ Rm×K is the predefined background dictionary. The Laplacian regularizations tr(ZLZT) and tr(ELET) are defined as

tr
(

ZLZT
)

=
1
2

N∑
i, j

∥∥zi − zj
∥∥2

2 yij (3)

tr
(

ELET
)

=
1
2

N∑
i, j

∥∥ei − ej
∥∥2

2 yij (4)

In Eqs. (3) and (4), zi and ei denote the i-th columns of the matrices Z and E, respectively. The weight yij implies the similarity between the i-th
and j-th super-pixels and will be discussed later in detail. Based on these weights, an affinity matrix W ∈ RN×N with its (i, j)-th entry Wi,j = yij

and a diagonal degree matrix C ∈ RN×N with its i-th diagonal element Ci,i =
∑

j
Wi,j are constructed. The Laplacian matrix L is thus defined as

L = C − W. k1, k2, and k3 are three positive trade-off parameters.
The weight yij is computed by Eq. (5) in this paper.

yij =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−

∥∥∥pi−pj

∥∥∥2

2
2s2

p

)
• exp

(
−

∥∥∥xi−xj

∥∥∥2

2
2s2

f

)
, if si and sj are spatially adjacent,

0, otherwise.

(5)

where pi, pj ∈ R2 denote the center positions of the super-pixels si and sj. xi, xj ∈ Rm are their feature vectors, respectively. sp and s f are two
scalars, and are experimentally set to

√
0.5 and 1, respectively.

In Eq. (5), the component, exp

(
−

∥∥∥pi−pj

∥∥∥2

2
2s2

p

)
, denotes the spatial distance between the two super-pixels si and sj, and the component,

exp

(
−

∥∥∥xi−xj

∥∥∥2

2
2s2

f

)
, indicates their feature similarity. Eq. (5) ensures that two super-pixels with smaller spatial distance and more similar features

are assigned to higher weight values, thus preserving the local consistency among the spatially adjacent super-pixels with similar features.
Fig. 3 illustrates the validity of the two Laplacian regularization terms. Compared with those detection results obtained by the RSR model

without imposing any Laplacian regularization terms (i.e., Fig. 3 (b)), the performance is improved to some extent by imposing one of the
two Laplacian regularization terms (i.e., Fig. 3 (c) and (d)). As well, compared with the detection results obtained by imposing one Laplacian
regularization term (i.e., Fig. 3 (c) and (d)), the performance is further improved by using two Laplacian regularization terms (i.e., Fig. 3 (e)).
More specifically, the foreground salient object is more uniformly highlighted (as shown in the first two rows in Fig. 3), and the background

Fig. 3. Illustrations of the validity of the two Laplacian regularization terms. (a) Original image; (b)–(e): Saliency maps obtained by the RSR model without any Laplacian regular-
ization terms, with the Laplacian regularization term on the representation coefficients only, with the Laplacian regularization term on the reconstruction errors only, with two
Laplacian regularization terms on the representation coefficients and reconstruction errors, respectively; (f) Ground truth.
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noise is also better suppressed (as shown in the last two rows in Fig. 3) by using two Laplacian regularization terms than using one of the two
Laplacian regularization terms.

The optimization algorithm is convex and can be solved by various methods. In this paper, we jointly adopt the Alternating Direction
Method of Multipliers (ADMM) [34] and a modified Sparse Reconstruction by Separable Approximation (SpaRSA)-based method [35] to solve
the optimization problem in Eq. (2). This requires the minimization of the following augmented Lagrangian function:

L(Z, E, Y) =‖Z‖1 + k1 ‖E‖2,1 + k2tr
(

ZLZT
)

+ k3tr
(

ELET
)

+ 〈Y , X − DZ − E〉 +
l

2
‖X − DZ − E‖2

F (6)

where Y is a Lagrangian multiplier, introduced to remove the equality constraint in Eq. (2), and l is a penalty parameter. < • > denotes
the Euclidean inner product of two matrices. Clearly, this problem becomes unconstrained, and can be minimized with respect to Z and E,
respectively. Algorithm 1 summarizes the calculations of the optimization model. More details can be seen in Appendix A.

Algorithm 1. Solving the optimization problem in Eq. (6).

3.2.4. Saliency map generation
In this part, we will explain how we compute the saliency measure for each super-pixel as well as how we compute the saliency value for

each pixel.

3.2.4.1. Saliency measure for each super-pixel. Given a background dictionary D, each column of the sparse errors matrix E obtained by solving
the model in Eq. (6) may contain the salient information of each super-pixel that is distinct from the background. In addition, the representation
coefficients may reflect the similarity between each test super-pixel and the backgrounds to some extent. Therefore, the proposed saliency
measure for each super-pixel consists of two sub-indexes in this paper. One is based on the reconstruction errors while the other is based on
the representation coefficients.

Generally, a super-pixel will be more salient if it has larger reconstruction errors with respect to the background dictionary. Considering
that, we define the reconstruction errors based saliency measure SalE(si) for the i-th super-pixel si as

SalE(si) = 1 − exp

⎛
⎝−

∥∥e∗
i

∥∥2
2

2s2
E

⎞
⎠ (7)

where e∗
i denotes the i-th column vector of the optimal errors matrix E∗ obtained by solving Eq. (6) and corresponds to the reconstruction

errors of the super-pixel si.
∥∥e∗

i

∥∥
2 represents the l2-norm of the vector e∗

i and is defined as
∥∥e∗

i

∥∥
2 =

√∑
j
(
e∗

i ( j)
)2

. sE is a scalar parameter and
is experimentally set to 4 here.

In addition to the reconstruction errors, the saliency value of each super-pixel can also be determined by its representation coefficients
to some extent. For example, as shown in Fig. 4 (a), a background super-pixel will be sparsely encoded by the predefined background
dictionary. In contrast, as shown in Fig. 4 (b), a foreground super-pixel will be densely encoded by the same background dictionary. In
other words, the saliency value of each super-pixel can be determined by the sparsity (also called coding length) of its representation
coefficients. As well, the foreground object in an image usually has higher contrast than the background and thus has higher energy. Conse-
quently, as shown in Fig. 4, the representation coefficients for a foreground super-pixel have higher magnitudes than those for a background
super-pixel.
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Fig. 4. Comparisons of representation coefficients of background and foreground super-pixels. (a) Representation coefficients for a background super-pixel; (b) Representation
coefficients for a foreground super-pixel.

Based on the above two observations, we define the representation coefficients based saliency measure SalZ(si) for the i-th super-pixel as

SalZ(si) =
∥∥z∗

i

∥∥
0

•

⎛
⎝1 − exp

⎛
⎝−

∥∥z∗
i

∥∥2
2

2s2
Z

⎞
⎠

⎞
⎠ (8)

where z∗
i denotes the i-th column vector of the optimal representation matrix Z∗ obtained by solving Eq. (6) and corresponds to the represen-

tation coefficients of the super-pixel si.
∥∥z∗

i

∥∥
0 represents the l0-norm of the vector z∗

i and is defined as the number of nonzero entries in the
vector z∗

i .
∥∥z∗

i

∥∥
0 and

∥∥z∗
i

∥∥
2 indicate the sparsity and the energy of the representation coefficients corresponding to the super-pixel si to some

extent, respectively. Similarly, sZ is a scalar parameter and is experimentally set to 4 in this paper.
The final saliency measure Sal(si) for the super-pixel si is defined by integrating the two saliency measures SalE(si) and SalZ(si) as

Sal(si) = SalE(si)a. ∗ SalZ(si)1−a (9)

where a ∈ (0, 1) is a scalar to control the contributions of the two terms and is set to 0.8 in the experiment par.

3.2.4.2. Saliency measure for each pixel. According to the saliency measure defined by Eq. (9), an initial super-pixel level saliency map Msp(si),
i.e., Msp(si) = Sal(si), is obtained. After that, a smooth saliency map M′

sp(si) is obtained by performing the propagation method [16] on the map
Msp(si). Finally, a pixel level saliency map Mpixel(p) is obtained by mapping the saliency map M′

sp(si) to the full-resolution image, i.e.,

Mpixel(p) = M′
sp(si), if p ∈ si (10)

Fig. 5 illustrates the saliency detection results obtained by different phases. As shown in Fig. 5 (d), the saliency measure defined by Eq. (9)
could more uniformly detect the whole salient object than those measures defined by Eq. (7) or Eq. (8) independently. After the saliency map
propagation, the salient object is further uniformly highlighted. Meanwhile, the background is also well suppressed.

Fig. 5. Saliency maps obtained by different saliency measures. (a) Original image; (b) Saliency maps obtained by using the reconstruction errors; (c) Saliency maps obtained by
using the representation coefficients; (d) Saliency maps by fusing (b) and (c); (e) Saliency maps after propagation; (f) Ground truth.
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3.3. Computational complexity

Suppose the data matrix X and dictionary D are with the sizes of m × N and m × K, respectively. Then the coefficients matrix Z has size K × N.
As discussed in [18], the computational complexity of Algorithm 1 is mainly dependent on the product of three matrices in Eq. (A.3) when the
matrix Z is updated. Theoretically, the computational complexity of the proposed method is thus O(rmK2N), where r is the number of iterations
needed for convergence. It demonstrates that the number of dictionary atoms K has a greater impact on the computational complexity of the
proposed method than the other parameters. In the proposed method, K is set to the number of boundary super-pixels (about 49), which is far
smaller than the total number of super-pixels N (about 200). This makes the computational cost of the proposed method acceptable.

4. Experiments and analysis

In this section, several sets of experiments are performed to verify
the superiority of the proposed salient object detection method.

4.1. Experimental setup

4.1.1. Datasets
In our experiments, we employ three public datasets, including

MSRA10 K [22], ECSSD [36], and DUT-OMRON [28], to test the supe-
riority of our proposed method. The detailed descriptions for these
datasets are presented in the Table 1.

4.1.2. Evaluation metrics
In the experiments, we adopt multiple evaluation metrics to

verify the superiority of our proposed method. Table 2 shows the
summary of the evaluation metrics. In the Table 2, S and G represent
a saliency map and the corresponding ground-truth, respectively. | • |
computes the number of non-zero entries in the mask. S(i, j) repre-
sents the saliency value of the (i, j)-th pixel in S. W and H are the
width and height of the image, respectively.

4.1.3. Parameters setting
The parameters of our method involve the number of superpixels

N, the fusion weight a in Eq. (9), and the balance parameters k1, k2,
and k3 in Eq. (2). The setting of these parameters is important to the
performance of the proposed method. We experimentally set the val-
ues of these parameters based on the performance of the proposed
method on the ASD dataset [20], which has 1000 images. This dataset
has similar characteristics with the MSRA10 K dataset due to the fact
that they are both collected from the MSRA database [37]. Each of
these parameters is set one by one, respectively, by fixing the others.
More specifically, in the experimental part, we test the impacts of
the parameters N (with a = 0.8, k1 = 0.1, k2 = 0.01, k3 = 0.01), a
(with N = 200, k1 = 0.1, k2 = 0.01, k3 = 0.01), k1 (with N = 200,
a = 0.8, k2 = 0.01, k3 = 0.01), k2 (with N = 200, a = 0.8,
k1 = 0.1, k3 = 0.01), and k3 (with N = 200, a = 0.8, k1 = 0.1,
k2 = 0.01) on the proposed method, respectively. The PR curves
of the proposed method with different parameters are illustrated in
Fig. 6.

From Fig. 6 (a), it can be found that the performance increases
with N, but is nearly unchanged when N is greater than or equal to
200. So, we set N = 200. The rest of parameters are set in a similar
way. In summary, these parameters are set to the values as in Table 3.

Table 1
Summary of the public datasets.

Name Size Characteristics

MSRA10 K [22] 10,000 Single object, high contrast, simple backgrounds
ECSSD [36] 1000 Multiple objects, various object categories, struc-

turally complex scene
DUT-OMRON [28] 5168 Multiple objects, different scales and locations,

cluttered backgrounds

4.1.4. Experiments
First, we employ the public dataset, MSRA10 K [22] to illustrate

the validity of the robust sparse representation model and local
consistency prior when applied to the detection of salient objects.
Then, we employ three public datasets, including MSRA10 K [22],
ECSSD [36], and DUT-OMRON [28], to test the superiority of our
proposed method. Finally, we analyze some failure examples of our
proposed method.

4.2. Validity of RSR model and local consistency prior

In this part, we will employ the MSRA10 K [22] dataset to illus-
trate the validity of the RSR model and local consistency prior
employed in our proposed method. For that, we compare our pro-
posed method (RSR-LC, for short) with another three methods,
including an RSR based (RSR-B, for short) and two SR based (SR-S, SR-
B, for short) methods mentioned in Fig. 1 in the earlier Introduction
part. The RSR-B method can be seen as a special case of our proposed
method with k2 = k3 = 0 in Eq. (2), without considering the local
consistency prior. In RSR-B and SR-B methods, a global background
dictionary obtained from the image boundary is employed. And in
the SR-S method, a local dictionary using the image patches sur-
rounding each test image patch is employed. Some detected results
by these four methods can be seen in Fig. 1 in the earlier Introduction
part.

Fig. 7 provides the quantitative results of the four methods. It
can be found that the RSR-B method significantly outperforms the
SR-S and SR-B methods in terms of the PR and F-measure curves.
This clearly shows the superiority of the RSR model over the tradi-
tional SR model when applied to salient object detection. Moreover,
it can also be easily found that the local consistency prior will further
improve the performance by comparing the detected results of the
RSR-B method and the proposed method.

4.3. Superiority of the proposed method

In addition to the MSRA10 K [22] dataset, we will employ
another two public benchmark datasets, i.e., ECSSD [36] and
DUT-OMRON [28], to further test the superiority of the proposed
method. As well, we compare the proposed method with another
9 state-of-the-art ones, including SR-LC [17], BFS [38], HDCT [24],
PCA [39], TD [40], GC [41], GS [15], SF [42], SS [43].

Table 2
Summary of the evaluation metrics.

Name Description

Precision-recall (PR) [2] Precision (P): |S∩G|
|S| , recall (R): |S∩G|

|G|
F-measure [2] Fb =

(
1 + b2) P∗R

b2P+R
, b2 = 0.3

Precision, recall, and F-measure
with an adaptive threshold [20]

thre = 2
W×H

∑W
i=1

∑H
j=1 S(i, j)

Mean absolute error (MAE) [2] MAE = 1
W×H

∑W
i=1

∑H
j=1 |S(i, j) − G(i, j)|
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Fig. 6. PR curves of the proposed method with different parameters values on the ASD dataset. (a) N; (b) a; (c) k1; (d) k2; (e) k3.

4.3.1. Visual comparison
Fig. 8 illustrates some detected results obtained by these

methods. As shown in Fig. 8, most of the methods mentioned in this
paper could achieve satisfactory results for all of the three datasets.
But by a careful comparison, we find that GC, HDCT, BFS and RSR-
LC could obtain higher performance in foreground detection and
background suppression than the other methods in most cases. Espe-
cially, for those images with similar foregrounds and backgrounds
(e.g., the third row in Fig. 8 (a) and the third row in Fig. 8 (c)),
the proposed method RSR-LC could still detect the whole objects.
Similar results could also be obtained by the proposed RSR-LC for
those images with complex backgrounds (e.g., the last row in Fig. 8
(c)). For these images, most of the state-of-the-art methods could
not obtain a satisfactory result. In addition, we also find that the
proposed method RSR-LC significantly outperforms SR-LC for these
images. This further demonstrates the superiority of the RSR model
over the traditional SR model.

4.3.2. Quantitative comparison
Fig. 9 provides the quantitative results of different methods,

complying with those subjective results mentioned in Fig. 8.
For MSRA10 K dataset, our proposed method is competitive with

HDCT and better than the other state-of-the-art methods in terms
of PR and F-measure curves. Given an appropriate threshold to seg-
ment the saliency map, our proposed method will obtain the highest
F-measure value among the methods mentioned here. Furthermore,
our proposed method obtains a good MAE value.

Table 3
Some parameters employed in our proposed method.

Parameter N a k1 k2 k3

Value 200 0.8 0.1 0.01 0.01

For ECSSD dataset, our proposed method achieves the best PR
and F-measure performance among the methods. That is to say,
compared with the state-of-the-arts, our proposed method is more
effective in salient object detection for those images where multiple
salient objects exist and belong to various categories. Seen from the
F-measure bars with an adaptive threshold, our proposed method
also obtains the highest F-measure value among the methods. And
our proposed method achieves the least MAE value.

For DUT-OMRON dataset, HDCT and our proposed method
perform competitively and are both better than the other state-
of-the-art methods in terms of the PR and F-measure curves. That is
to say, our proposed method could still achieve satisfactory results
for images with more complex background structures. Given an
appropriate threshold, our proposed method can obtain the second
best F-measure value among the methods. Moreover, our proposed
method achieves the best performance in terms of the metric of
MAE.

4.3.3. Computational complexity comparison
To demonstrate the computational efficiency of our proposed

method, we list the average execution time of several state-of-the-art
methods1 and our proposed method on the ASD dataset [20]. These
methods are all run in Matlab 2013 on a PC with an Intel(R) Core(TM)
i7-4790 3.60 GHz CPU. As shown in Table 4, our proposed method
(RSR-LC) is slightly slower than SR-LC but much faster than PCA and
BFS.

1 Here we just list those methods whose Matlab codes are provided in their
corresponding project websites.
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Fig. 7. Quantitative comparisons of the RSR-LC, RSR-B, SR-B, SR-S methods.

Fig. 8. Visual comparisons on different methods. (a)–(e): Results on MSRA10K, ECSSD, and DUT-OMRON datasets, respectively.
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Fig. 9. Quantitative comparisons on different methods. From left to right: Results on MSRA10K, ECSSD, and DUT-OMRON datasets, respectively. From top to bottom: PR curves,
F-measure curves, precision, recall, and F-measure bars with an adaptive threshold, and MAE bars, respectively.

4.4. Failure cases

In the proposed method, those super-pixels near the image
boundary are selected to construct the background dictionary based
on the background prior [15]. In most cases, this may work well.
However, in some images, salient objects appear near the image
boundary, and thus some foreground regions will be contained in
the background dictionary. As a result, these foreground regions will
be mistakenly marked as background regions for these images. In
addition, if the background regions far from the image boundary and
those near the image boundary have obviously distinctive charac-
teristics, some background regions will also be mistakenly marked
as foregrounds. Some failure cases are illustrated in Fig. 10. Exploit-
ing more efficient background dictionary construction methods will
overcome this problem and we leave this as the future work.

Table 4
Average execution time of several methods (seconds per image).

Methods Ours SS PCA BFS SR-LC

Time (s) 1.7649 0.0219 2.4589 6.4427 1.2793

5. Conclusion

In this paper, we have presented a new salient object detec-
tion method that incorporates a local consistency prior into the
robust sparse representation (RSR) model. By virtue of RSR, salient
objects can be seen as strong but sparse “outliers” within an image,
which allows to reformulate the salient object detection problem
as a sparsity pursuit one. Given the same background dictionary,
the RSR based method can better suppress the background noise
than those traditional SR based ones. Moreover, owing to the local
consistency prior, the whole salient object could be more uniformly
highlighted. Experimental results demonstrate that the proposed
method significantly outperforms the traditional SR based meth-
ods and is competitive with some current state-of-the-art methods,
especially for those images with complex structures.
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Fig. 10. Failure cases. (a) Original images; (b) Saliency maps obtained by the proposed method; (c) Ground truth.

Appendix A

In this appendix, the update scheme required for solving Eq. (6)
in the text is described in detail.

(1) Update Z:

Z = arg min
Z

‖Z‖1 + k2tr
(

ZLZT
)

+ 〈Y , X − DZ − E〉 +
l

2
‖X − DZ − E‖2

F

= arg min
Z

‖Z‖1 + k2tr
(

ZLZT
)

+
l

2

∥∥∥∥X − DZ − E +
1
l

Y
∥∥∥∥

2

F

= arg min
Z

‖Z‖1 + f (Z) (A.1)

where f (Z) = k2tr
(
ZLZT

)
+ l

2

∥∥∥X − DZ − E + 1
l Y

∥∥∥2

F
. This sub-

optimization problem can be solved by using the modified SpaRSA-
based method [35] in an iterated way, i.e.,

Z(t+1) = arg min
Z

1

g
(t)
Z

‖Z‖1 +
1
2

∥∥∥∥∥Z −
(

Z(t) − 1

g
(t)
Z

∇Zf
(

Z(t)
))∥∥∥∥∥

2

F

(A.2)

where g
(t)
Z = 1.02

(
2k2 ‖L‖2

F +l(t)
∥∥DT D

∥∥2
F

)
[44,45]. ∇Z f(Z (t)) is the

partial differential of f(Z) with respect to Z in the t-th iteration, and is
computed by:

∇Z f
(

Z(t)
)

= 2k2Z(t)L − lDT
(

X − DZ(t) − E(t) +
1
l(t)

Y(t)
)

(A.3)

Thus, the sub-optimization problem in Eq. (A.2) has the following
closed-form solution [34]:

Z(t+1) = S 1

g
(t)
Z

(
Z(t) − 1

g
(t)
Z

∇Zf
(

Z(t)
))

(A.4)

where the threshold function St(x) is defined as

St(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − t, if x > t

x + t, if x < −t

0, otherwise

(A.5)

(2) Update E:

E = arg min
E

k1 ‖E‖2,1 + k3tr
(

ELET
)

+ 〈Y , X − DZ − E〉 +
l

2
‖X − DZ − E‖2

F

= arg min
E

k1 ‖E‖2,1 + k3tr
(

ELET
)

+
l

2

∥∥∥∥X − DZ − E +
1
l

Y
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2

F

= arg min
E

k1 ‖E‖2,1 + f (E) (A.6)

where f (E) = k3tr
(
ELET

)
+ l

2

∥∥∥X − DZ − E + 1
l Y

∥∥∥2

F
. Similarly, this

sub-optimization problem can also be solved by using the modified
SpaRSA-based method [33] in an iterated way, i.e.,

E(t+1) = arg min
E

k1

g
(t)
E

‖E‖2,1 +
1
2

∥∥∥∥∥E −
(

E(t) − 1

g
(t+1)
E

∇Ef
(

E(t)
))∥∥∥∥∥

2

F

(A.7)

where g
(t)
E = 1.02

(
2k3 ‖L‖2

F +l(t)
)

[44,45]. ∇Ef(E(t)) is the partial
differential of f(E) with respect to E in the t-th iteration, and is
computed by:

∇Ef
(

E(t)
)

= 2k3E(t)L − l

(
X − DZ(t) − E(t) +

1
l

Y(t)
)

(A.8)

The sub-optimization problem in Eq. (A.7) has the following closed-
form solution [34]

E(t+1)(:, i) =

⎧⎪⎪⎨
⎪⎪⎩

(
‖G(:,i)‖2− k1

g
(t)
E

)

‖G(:,i)‖2
G(:, i), if ‖G(:, i)‖2 ≥ k1

g
(t)
E

0, otherwise

(A.9)

where G = E(t) − 1
g

(t)
E

∇Ef
(

E(t)
)

. E(:, i) and G(:, i) denote the i-th

columns of the matrices E and G, respectively.
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